Package: csmGmm 0.3.0
csmGmm: Conditionally Symmetric Multidimensional Gaussian Mixture Model
Implements the conditionally symmetric multidimensional Gaussian mixture model (csmGmm) for large-scale testing of composite null hypotheses in genetic association applications such as mediation analysis, pleiotropy analysis, and replication analysis. In such analyses, we typically have J sets of K test statistics where K is a small number (e.g. 2 or 3) and J is large (e.g. 1 million). For each one of the J sets, we want to know if we can reject all K individual nulls. Please see the vignette for a quickstart guide. The paper describing these methods is "Testing a Large Number of Composite Null Hypotheses Using Conditionally Symmetric Multidimensional Gaussian Mixtures in Genome-Wide Studies" by Sun R, McCaw Z, & Lin X (2024, <doi:10.1080/01621459.2024.2422124>). The paper is accepted and published online (but not yet in print) in the Journal of the American Statistical Association as of Dec 1 2024.
Authors:
csmGmm_0.3.0.tar.gz
csmGmm_0.3.0.zip(r-4.5)csmGmm_0.3.0.zip(r-4.4)csmGmm_0.3.0.zip(r-4.3)
csmGmm_0.3.0.tgz(r-4.4-any)csmGmm_0.3.0.tgz(r-4.3-any)
csmGmm_0.3.0.tar.gz(r-4.5-noble)csmGmm_0.3.0.tar.gz(r-4.4-noble)
csmGmm_0.3.0.tgz(r-4.4-emscripten)csmGmm_0.3.0.tgz(r-4.3-emscripten)
csmGmm.pdf |csmGmm.html✨
csmGmm/json (API)
# Install 'csmGmm' in R: |
install.packages('csmGmm', repos = c('https://ryansunwork.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 21 days agofrom:8218896ca3. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 04 2024 |
R-4.5-win | OK | Dec 04 2024 |
R-4.5-linux | OK | Dec 04 2024 |
R-4.4-win | OK | Dec 04 2024 |
R-4.4-mac | OK | Dec 04 2024 |
R-4.3-win | OK | Dec 04 2024 |
R-4.3-mac | OK | Dec 04 2024 |
Exports:calc_dens_corcalc_dens_ind_2dcalc_dens_ind_3dcalc_dens_ind_multiplecheck_incongruousfind_2dfind_3dfind_max_meanssymm_fit_cor_EMsymm_fit_cor_EM_fullliksymm_fit_cor_EM_noAssumptionsymm_fit_cor_EM_rhosymm_fit_ind_EMsymm_fit_ind_EM_noAssumption
Dependencies:clidplyrfansigenericsgluelifecyclemagrittrmvtnormpillarpkgconfigR6rlangtibbletidyselectutf8vctrswithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
calc_dens_cor.R | calc_dens_cor |
calc_dens_ind.R | calc_dens_ind_2d |
Calculate J trivariate normal densities (all dimensions are independent) under fitted csmGmm. | calc_dens_ind_3d |
Calculate the density of K-dimensional multivariate normal (all dimensions are independent) under fitted acsGmm. | calc_dens_ind_multiple |
check_incongruous.R | check_incongruous |
Tells if row x if allTestStats is an incongruous result (has a higher lfdr than a set of test statistics with lower magnitudes). For K=2 case. | find_2d |
Tells if row x if allTestStats is an incongruous result (has a higher lfdr than a set of test statistics with lower magnitudes). For K=3 case. | find_3d |
find_max_means.R | find_max_means |
symm_fit_cor.R | symm_fit_cor_EM |
symm_fit_cor_fulllik.R | symm_fit_cor_EM_fulllik |
symm_fit_cor_noAssumption.R | symm_fit_cor_EM_noAssumption |
symm_fit_cor_rho.R | symm_fit_cor_EM_rho |
symm_fit_ind.R | symm_fit_ind_EM |
symm_fit_ind_noAssumption.R | symm_fit_ind_EM_noAssumption |